
www.manaraa.com

University of Colorado, Boulder
CU Scholar
Aerospace Engineering Sciences Graduate Theses &
Dissertations Aerospace Engineering Sciences

Spring 1-1-2019

A Nanosecond-Level Time Accuracy Method
Using Assisted-GPS Techniques with Variable
Time Ambiguity Analysis
Ryan Christopher Blay
University of Colorado at Boulder, rcblay@gmail.com

Follow this and additional works at: https://scholar.colorado.edu/asen_gradetds

Part of the Aerospace Engineering Commons

This Thesis is brought to you for free and open access by Aerospace Engineering Sciences at CU Scholar. It has been accepted for inclusion in Aerospace
Engineering Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.

Recommended Citation
Blay, Ryan Christopher, "A Nanosecond-Level Time Accuracy Method Using Assisted-GPS Techniques with Variable Time Ambiguity
Analysis" (2019). Aerospace Engineering Sciences Graduate Theses & Dissertations. 257.
https://scholar.colorado.edu/asen_gradetds/257

https://scholar.colorado.edu?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.colorado.edu/asen_gradetds/257?utm_source=scholar.colorado.edu%2Fasen_gradetds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cuscholaradmin@colorado.edu


www.manaraa.com

A Nanosecond-level Time Accuracy Method using

Assisted-GPS Techniques with Variable Time Ambiguity

Analysis

by

R. C. Blay

B.S., University of Colorado Boulder, 2019

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science

Department of Aerospace Engineering Sciences

2019



www.manaraa.com

This thesis entitled:
A Nanosecond-level Time Accuracy Method using Assisted-GPS Techniques with Variable

Time Ambiguity Analysis
written by R. C. Blay

has been approved for the Department of Aerospace Engineering Sciences

Prof. Dennis Akos

Dr. Nagaraj Channarayapatna Shivaramaiah

Date

The final copy of this thesis has been examined by the signatories, and we find that both
the content and the form meet acceptable presentation standards of scholarly work in the

above mentioned discipline.



www.manaraa.com

iii

Blay, R. C. (M.S., Aerospace Engineering Sciences)

A Nanosecond-level Time Accuracy Method using Assisted-GPS Techniques with Variable

Time Ambiguity Analysis

Thesis directed by Prof. Dennis Akos

In this thesis, a brief overview of the GPS L1 signal structure and GPS position and

time estimation is given. Then, van Diggelen’s A-GPS method is discussed with his mil-

lisecond ambiguity approach. Next, a way to accurately use any ambiguity time to reach

nanosecond-level accuracy is developed. Experiments are then run to quantify the sensitiv-

ity of A-GPS to a priori errors in position and time, as well as the performance of the first

sample time error as a function of ambiguity time. It is found that the safe zone for A-GPS

is less than 35 km initial position error and less than 30 seconds initial time error. It is

also found that an ambiguity time of 200 ms converges to nanosecond-level accuracy 99 %

of the time. Most first sample time errors are within one nanosecond while none exceed two

nanoseconds as compared to a traditional GPS L1 SDR.
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Chapter 1

Introduction

These days, everyone wants the most benefit for the least work, and rightly so. Some-

times, to achieve this, a little assistance is required. In a large busy parking lot, it can take

a long time to find a parking spot. However, with just a quick hint from a leaving car,

the search reduces dramatically, and the empty white painted lines ensure the parking is

well done. Assisted-GPS is like the quick hint, and this research will dive into the accuracy

provided by the white painted lines. To further this analogy past the point of no return, the

white painted lines provide a reference mark that you can use to calibrate your parking. For

GPS, this reference mark is provided by the L1 C/A code, the navigation data, and the data

subframe start. These three references are mile markers on the road that provide known

time information when all else is lost.

1.1 Previous Work

For the GPS signal structure, and especially the receiver details, Borre et al.’s GPS

receiver book [4] provided much of the details and figures shown in the initial theory sections.

Frank van Diggelen’s A-GPS book [5] provided the majority of the inspiration and

details of this research. In his book, van Diggelen describes the assistance data in detail and

then develops the navigation equations with coarse time. He then shows his novel approach to

fix the millisecond integer ambiguity. This book was also very important in understanding

the sensitivity to a priori position and time estimate errors, which this research will also
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discuss. van Diggelen also briefly discusses the results when navigation bit synchronization

is achieved but does not describe this application at length.

Besides van Diggelen’s technique, there are other papers that describe different ap-

proaches to finding position without navigation bit decoding. Sirola and Syrjarinne in [8, 9]

propose a range-fitting cost function over the space of position and coarse time using an

iterative approach. Syrjarinne and Akopian also formulate a time-recovery method but use

optimatizion and/or Extended Kalman Filters [2, 10]. Glennon and Bryant propose two

different approaches for accurate time recovery with a focus on the single-stage algorithm

which closely resembles the approach taken in this thesis [6]. Agarwal et al. in their review

also approach the problem of time-stamp recovery in which they discuss several different

approaches as well as the navigation-bit alignment that will be discussed in this thesis [1].

Muthuraman et al. also review several different time-recovery algorithms but do not ap-

proach the same level of accuracy as shown in other approaches [7]. Finally, Akopian and

Syrjarinne return in 2009 to propose the time recovery approach that will be shown in this

thesis for navigation bit alignment and show the performance at different signal strengths

[3].

1.2 Thesis’s Focus

In this thesis, the GPS signal structure and the GPS software receiver will be briefly

described. Then, the A-GPS technique as described by van Diggelen will be discussed. Next,

the approach to finding a much more accurate time estimate will be described. Instead of

characterizing the performance of navigation bit alignment, this research will study the

amount of time ambiguity required for nanosecond level time accuracy. Finally, experiments

will be performed to find the allowable a priori errors and the performance of the accurate

time estimation method.
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Chapter 2

Background

2.1 GPS L1 Signal Structure

A brief description of the GPS L1 signal structure will be given below. However, the

approach shown in this research applies to any GNSS signal with data present.

All GPS signals reside in the L band within the UHF band which ranges from 1 to 2

GHz. L1 and L2 frequencies are derived from a common frequency f0 of 10.23 MHz and are

shown below.

fL1 = 154f0 = 1575.42 MHz

fL2 = 120f0 = 1227.60 MHz

Both signals are comprised of the carrier, the navigation data, and a spreading se-

quence. For L1, the spreading sequence is the coarse acquisition code (C/A) and for L2, it is

the encrypted precision code (P(Y)). The C/A code is a sequence of 1023 chips with one chip

every 977 nanoseconds, giving it a chipping rate of 1.023 MHz. The P(Y) code has a longer

sequence of around 2.35 * 1014 chips with a chipping rate of 10.23 MHz that restarts every

week and is only a segment of the larger P(Y) code. In Fig. 2.1, the GPS signal generation

is described.



www.manaraa.com

4

Figure 2.1: GPS signal generation diagram [4]

As shown, the C/A code is only modulated onto the L1 signal, while the P(Y) signal

is modulated on L1 and L2. From this, the signal transmitted from the satellite is described

as

sk(t) =
√

2PC(Ck(t) ⊕Dk(t))cos(2πfL1t)

+
√

2PPL1(P
k(t) ⊕Dk(t))sin(2πfL1t) +

√
2PPL2(P

k(t) ⊕Dk(t))sin(2πfL2t) (2.1)

where PC , PPL1, and PPL2 are the signal powers with C/A or P code, Ck is the C/A

code sequence of satellite number k, Pk is the P(Y) code sequence for satellite number k, Dk

is the navigation data, and fL1 and fL2 are the L1 and L2 carrier frequencies. Below in Fig.

2.2 are the three L1 signal components.
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Figure 2.2: GPS signal as function of time [4]

As can be seen, the carrier signal has a much higher frequency while the code repeats

every millisecond and a navigation data bit consists of 20 code periods. Both the code

and the navigation bit will be very important as time ambiguities in the following A-GPS

development.

2.1.1 C/A Codes

C/A codes are pseudo-random noise sequences known as Gold codes. Each satellite

has a different Gold code which is created using linear feedback shift registers to result in a

sequence of 1’s and -1’s. This process is shown below in Fig. 2.3.
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Figure 2.3: Gold sequence generation algorithm [4]

As seen above, the phase selector chooses two different phases of the G2 generator to

modulo-2 add and then this is modulo-2 added to the G1 output to produce the unique PRN

code for the satellite. Gold codes are used for their correlation properties where there is a

high value at auto-correlation, and near zero correlation for any chip shift.

2.1.2 Navigation Data Bits

As previously mentioned, the navigation data is modulated onto the GPS L1 signal

with a rate of 50 bits per second. Importantly, this means that every 20 milliseconds, there is

a new navigation bit. However, it does not mean that every 20 milliseconds it will transition

from a +1 to a -1. This will become an important detail in the following sections regarding

time ambiguity. An entire navigation message is transmitted over 12.5 minutes comprised

of 25 frames, each 30 seconds long. Each frame has 1500 bits and is further separated into

five subframes of 300 bits. This is visualized in Fig. 2.4 below.
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Figure 2.4: Navigation message structure [4]

Every subframe begins with a telemetry word (TLM) and handover word (HOW). The

TLM word is used for frame synchronization with its 8-bit preamble. The HOW word con-

tains a 17-bit truncated time-of-week (TOW) followed by flags and the subframe number.

Each subframe consists of different details of the navigation message. The first subframe con-

tains clock corrections and health information for the transmitting satellite. The second and

third subframe contain the ephemeris parameters which give the satellite orbit and position

parameters. Finally, the fourth and fifth subframes contain the almanac data which contains

useful support information, such as ionospheric model parameters and UTC parameters.

2.2 GPS Position/Time Estimation

In order to calculate the position and time of a user receiver, there needs to be at least

four satellites. At first glance, it would seem that only three should be required to find the

receiver position but in reality the user clock is not accurate and must also be estimated. In

Fig. 2.5, this is simply visualized.
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Figure 2.5: GPS solution estimation w/four satellites [4]

The calculation of the position centers around the time it takes between the signal’s

transmission and reception for each satellite. This time multiplied by the speed of light gives

the pseudorange. In an ideal situation, this pseudorange would be the geometrical range ρ

from the satellite to the receiver and the location could be triangulated. However, this is

not the case, and there are multiple error sources that have to be estimated or taken care of

in order to estimate the position and time.

2.2.1 Pseudorange Measurement Model

The major error sources consist of the receiver clock error dti, the satellite clock error

dtk, the troposphere T ki , the ionosphere Iki , and other errors, like multipath, combined into

eki . Below in Eq. 2.2, the relation of pseudorange P k
i and geometric range ρki is shown with

these error sources.

P k
i = ρki + c(dti − dtk) + T ki + Iki + eki (2.2)

where the subscript i refers to the receiver. The geometrical range is calculated as:
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ρki =
√

(Xk −Xi)2 + (Y k − Yi)2 + (Zk − Zi)2 (2.3)

where Xk, Y k, Zk is the satellite position and Xi, Yi, Zi is the receiver position.

2.2.2 Iterative Least Squares Approach

Inserting Eq. 2.3 into Eq. 2.2 and linearizing the result gives Eq. 2.4 shown below.

P k
i = ρki,0−

Xk −Xi,0

ρki,0
∆Xi−

Y k − Yi,0
ρki,0

∆Yi−
Zk − Zi,0

ρki,0
∆Zi+c(dti−dtk)+T ki +Iki +eki (2.4)

This equation has four unknowns of ∆Xi, ∆Yi, ∆Zi, and dti. To minimize the error

term eki , an iterative least squares approach is used. Thus, Eq. 2.4 needs to be arranged in

the form of Eq. 2.5.

Ax = b (2.5)

where each element of b is equal to

bki = P k
i − ρki,0 + cdtk − T ki − Iki − eki (2.6)

and is then combined into

Ax =



−X1−Xi,0

ρ1i,0
−Y 1−Yi,0

ρ1i,0
−Z1−Zi,0

ρ1i,0
1

−X2−Xi,0

ρ2i,0
−Y 2−Yi,0

ρ2i,0
−Z2−Zi,0

ρ2i,0
1

−X3−Xi,0

ρ3i,0
−Y 3−Yi,0

ρ3i,0
−Z3−Zi,0

ρ3i,0
1

...
...

...
...

−Xm−Xi,0

ρmi,0
−Ym−Yi,0

ρmi,0
−Zm−Zi,0

ρmi,0
1





∆Xi,1

∆Yi,1

∆Zi,1

cdti,1


= b− e (2.7)

which is then iteratively solved until it converges. Convergence is usually when the

state corrections’ norm is within a certain tolerance, e.g. 1 × 10−8.
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2.3 GPS Software Receiver

To go from raw data to a converged position solution, the GPS software defined radio

(SDR) comes into play. The software receiver is useful for having full visibility of the GPS

data and its corresponding acquisition, tracking, and navigation results. It allows for much

more flexibility and for modifications to be possible. The very first component of the GPS

software receiver is the data input, or front-end. Each GPS satellite transmits its signal as

described above for the GPS antenna to receive. The signal then goes through a multitude

of filtering, amplification, and sampling to become the IF sampled signal that the GPS SDR

accepts. This is visualized in a block diagram in Fig. 2.6 below.

Figure 2.6: Receiver front-end block diagram [4]

The most important characteristics of the data are the sampling frequency, the inter-

mediate frequency (IF), and whether the signal is complex or real. Once the data is passed

in, the signal is acquired and tracked before calculating the position solution. Each of these

steps will now be explained in further detail.
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2.3.1 Acquisition

Acquisition is essentially the search for satellite PRN codes. The purpose of acquiring is

to determine which satellites are visible and their coarse carrier frequencies and code phases.

There are 32 different PRN sequences, each corresponding to a satellite, that acquisition

searches for. The main challenge of acquiring GPS signals is that the signal power is below

that of thermal noise, as seen in Fig. 2.7.

Figure 2.7: GPS signal under noise [4]

This is where the correlation properties of the PRN codes come into play. If the data

is correlated with a replica of a present satellite’s PRN code, then the resulting spike will be

strong enough to overcome the noise (if the signal is strong enough). However, the code phase

of the data’s PRN code for that satellite is unknown so each different possible delay needs

to be tested. Adding to that, the movement of the satellite causes the signal’s frequency

to change and thus the many different doppler frequencies also need to be tested for a high

correlation value. This results in a search space of doppler frequency and code phase, as

shown in Fig. 2.8.
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Figure 2.8: Acquisition peak [4]

If the magnitude of the peak is strong enough, then that satellite is acquired and passed

to tracking. In their book, Borre et al. compare several different acquisition algorithms,

finding that the parallel code phase search is the fastest but most complex [4].

2.3.2 Tracking

Given all the visible satellites and their rough carrier frequencies and code phases, it

is now up to tracking to refine these values and be able to demodulate the navigation data

from the satellite’s signal. In order to understand how the navigation data is retrieved, the

signal starting from the front-end will be examined. In the equation below, the output after

filtering and down-converting is shown:

sk(t) =
√

2PCC
k(t)Dk(t) cos (ωIF t) +

√
2PPL1P

k(t)Dk(t) sin (ωIF t) (2.8)

This signal is then sampled by the ADC and is described by:
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sk(n) = Ck(n)Dk(n) cos (ωIFn) + e(n) (2.9)

where n = 1/fs and thus is now discrete in time. To extract the data Dk(n), the signal

must be modulated down to baseband by removing the IF carrier cos (ωIFn) and the code

Ck(n). Removing the carrier just requires multiplying the signal by a replica with same

carrier frequency and applying a low-pass filter. Then the signal is

LHS =
1

2
Ck(n)Dk(n) (2.10)

Then by lining up the code replica exactly, the data can be extracted as shown in the

equation below.

N−1∑
n=0

Ck(n)Ck(n)Dk(n) = N
N−1∑
n=0

Dk(n) (2.11)

where N
∑N−1

n=0 D
k(n) is the navigation data multiplied by the number of points N

in the signal. In order to have the demodulation done accurately, the code phase and the

carrier phase have to be tracked. Fig. 2.9 shows a visualization of how the code is tracked.

Figure 2.9: Early Prompt Late tracking diagram [4]

Essentially, there are three spaced correlators that check the correlation value at their
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chip location. In this case, they are spaced with half a chip distance. The goal is to have

the prompt correlator match up exactly with the zero offset, while the early and late are on

either side, ideally symmetric at half correlation. This is visualized simply in Fig. 2.10.

Figure 2.10: Simplified loop at EPL tracking loop [4]

As shown, the PRN code generator inputs into the early, prompt, and late correlators

and is mixed with the incoming signal with the carrier removed. This would be ideal if the

phase was locked but since there is phase error, it is necessary to correlate the in-phase and

quadrature arms separately, as shown in Fig. 2.11.

Figure 2.11: I/Q tracking loop with EPL diagram [4]



www.manaraa.com

15

Importantly, the tracking loop needs a feedback discriminator to let it know how to

adjust itself so that the prompt correlator lines up with zero offset. Borre et al. looked at

several different discriminators and find that the one below is good at tracking noisy signals

of different strengths.

D =
(I2E +Q2

E) − (I2L +Q2
L)

(I2E +Q2
E) + (I2L +Q2

L)
(2.12)

In order to track the carrier phase/frequency, a slightly different approach is required,

as shown in Fig. 2.12.

Figure 2.12: Carrier tracking diagram [4]

The above figure details a Costas loop. The goal of a Costas loop is to keep all of the

energy in the in-phase arm. If the code replica is aligned perfectly then the in-phase arm

results in the following sum:

Dk(n)cos(ωIFn)cos(ωIFn+ ϕ) =
1

2
Dk(n)cos(ϕ) +

1

2
Dk(n)cos(2ωIFn+ ϕ) (2.13)

where ϕ is the phase offset. The quadrature arm results in the following:

Dk(n)cos(ωIFn)sin(ωIFn+ ϕ) =
1

2
Dk(n)sin(ϕ) +

1

2
Dk(n)sin(2ωIFn+ ϕ) (2.14)
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After these signals are lowpass-filtered, then the following equations result:

Ik =
1

2
Dk(n)cos(ϕ) (2.15)

Qk =
1

2
Dk(n)sin(ϕ) (2.16)

Thus the feedback discriminator for the Costas loop is found by calculating the phase

error as shown below.

Qk

Ik
=

1
2
Dk(n)sin(ϕ)

1
2
Dk(n)cos(ϕ)

= tanϕ (2.17)

ϕ = tan−1(
Qk

Ik
) (2.18)

Thus, when all the energy is in the in-phase arm, the phase error is zero. Combining

the carrier and code tracking loops results in the block diagram shown in Fig. 2.13.

Figure 2.13: Carrier/Code combined tracking loop diagram [4]
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Fig. 2.13 is the optimized combination where the multiplications are shared between

the two loops. In Fig. 2.14, the flow diagram is shown in how the receiver tracks all the

satellite signals.

Figure 2.14: Tracking block diagram [4]

With all the satellites tracked, the navigation data is successfully extracted and can

now be parsed. This will lead to being able to estimate the position and other navigation

parameters.

2.3.3 Navigation (Position Estimation)

Finally, the position can be estimated. First though, the navigation bits have to be

correctly parsed from the prompt I correlator data. As shown in Fig. 2.15, the transitions
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have to be identified accurately so that there is integrity of the bit sequence where the y-axis

shows the prompt-I correlation data as explained above.

Figure 2.15: Navigation bit transition diagram [4]

Once the prompt I is converted into 1’s and -1’s, it can be parsed. The receiver first

searches for the preamble in the TLM word, and then finds the first sub-frame location in

the data and the TOW. The contents of the TLM and HOW words are shown in Fig. 2.16.

Figure 2.16: TLM and HOW words in navigation message structure [4]
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After that, the TOW is used to find the time of reception. Next, the pseudoranges are

calculated, the satellites are positioned, and the least squares iteratively finds the position

as explained above.

Calculating the pseudoranges consists of finding the difference between the time of

transmission and time of reception and is visualized in the flow diagram in Fig. 2.17.

Figure 2.17: Calculate Pseudoranges block diagram [4]

If the receiver is calculating the first position solution, then the first step is to search

for the preamble and make sure that it is repeated every 300 bits. The TLM and HOW

are decoded and passed through a parity check before decoding the entire ephemeris. The

millisecond is then recorded of the first subframe and is repeated for each channel. After all

channels are processed, the travel times are calculated and used to find the pseudoranges.

Finally, the least squares algorithm’s flow diagram is shown below in Fig. 2.18.
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Figure 2.18: Least Squares block diagram [4]

First, the user’s position is initialized at the center of the Earth. The range is then

computed between the user’s estimated position and the satellite positions at the time of

transmission. The travel time is derived from the range and used to correct the satellite

position due to the Earth’s rotation in that time. The atmospheric corrections are then

applied. The A matrix and the b vector are then found as each satellite is processed. The
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position correction is calculated and the state is updated until it converges.

This is performed for every navigation measurement until a position estimate and

time estimate is found. The corrected sampling frequency and time of first sample is then

calculated.
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Assisted-GPS

The goal of Assisted-GNSS is to get accurate estimates of position and time with much

less data. The receiver needs to still receive satellite measurements but can now process them

in a much quicker time, or process much weaker signals. Below in Fig. 3.1, an overview of

A-GPS is visualized.

Figure 3.1: A-GPS overview [5]

Essentially, the satellites still send the data and PRN code but because of obstruction,

the receiver loses the ability to parse the data. Instead, a local cell tower sends the equivalent
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data to the receiver so that it can still process the satellites. More generally, A-GPS provides

much more information and consists of an entire reference network as shown in Fig. 3.2.

Figure 3.2: A-GPS network assistance [5]

The assistance can consist of the PRN’s to search for with the acquired code phase

and doppler frequencies, the ephemeris and almanac, and the approximate position and time

of the receiver. The question still remains of how to use this assistance data to solve for

the receiver’s position and time. As explained above, the time of transmission and time of

reception are needed to calculate the pseudoranges. Without either time, the pseudoranges

must be estimated and improved on, as described below.

3.1 Five-State Least Squares Approach to Coarse Time Estimation

To investigate this problem, the coarse-time error shall be defined as the difference

between the true receiver time and the estimated receiver time. Looking at the effect of

adding a coarse-time error, first consider the pseudorange residuals as used in the least

squares algorithm:

δz(k) = z(k) − ẑ(k) (3.1)



www.manaraa.com

24

where z(k) is the actual pseudorange for satellite k, and ẑ(k) is the predicted pseudorange

and is given by

ẑ(k) =
∣∣x(k)(t̂tx) − xxyz0

∣∣− δ(k)t (t̂tx) + b0 (3.2)

and t̂tx is the estimated time of transmission of the satellite signal we are measuring,

x(k)(t̂tx) is the calculated satellite position at time t̂tx, xxyz0 is the a priori receiver position,

δ
(k)
t (t̂tx) is the satellite clock error in units of length at time t̂tx, and b0 is the a priori estimate

of the common bias in units of length. However, the problem is that the time t̂tx is in error,

so the normal four-state least squares algorithm can not solve for the receiver position and

common bias. When t̂tx is incorrect, so is x(k)(t̂tx) and δ
(k)
t (t̂tx). For each one second of error,

the pseudoranges would be incorrect on the order of 800 m [5]. There is hope though, as we

know the velocities of the satellites, and thus the pseudorange rate. Below in Eq. 3.3, the

difference of estimated pseudorange at the correct and incorrect transmission time is shown.

ẑ(k)(t̂tx) − ẑ(k)(ttx) = ẑ(k)(t̂tx) − ẑ(k)(t̂tx + δtc)

= −ν(k)δtc
(3.3)

where δtc is the coarse-time error, ttx is the actual time of transmission, t̂tx is the

coarse-time estimate of the time of transmission, ν(k) = (e(k) · v(k) − δ̇
(k)
t ) is the pseudorange

rate, e(k) is the unit vector from the receiver to the satellite k, v(k) is the satellite velocity

vector, and δ̇
(k)
t ) is the satellite-clock error rate in units of length/time. So now there is a

term that takes care of the coarse-time error in the pseudoranges. The state-update vector

is now
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δx =



δx

δy

δz

δb

δtc


(3.4)

and the pseudorange residuals for each satellite are

δz(k) = z(k) − ẑ(k) = −e(k) · δxxyz + δb + ν(k) · δtc + ε(k) (3.5)

with ε(k) encapsulating all atmospheric and other errors. Stacking the pseudorange

residuals for all satellites leads to the following:

δz = Hδx+ ε (3.6)

with

H =


−e(1) 1 ν(1)

...
...

...

−e(K) 1 ν(K)

 (3.7)

where K is the number of satellites. Since there are now five columns of the H matrix,

there now must be at least five satellites to solve for δx. Thus, a closed-form five-state

solution has been developed to solve for position without precise time. However, there is one

issue that has yet to be addressed. The measured pseudoranges for each satellite will have a

millisecond integer ambiguity error. Explaining and fixing this error will be discussed in the

section below. Assuming it is resolved, Fig. 3.3 shows the block diagram for the five-state

least squares algorithm.



www.manaraa.com

26

Figure 3.3: Five-state navigation solution block diagram [5]

The a posteriori residual check is to make sure that the computed position and time

actually fit the given satellite positions and is usually not a concern if the a priori error is

not too large.

3.2 Fixing the Millisecond Ambiguity

Since the full pseudorange is not available because the subframes are not decoded,

there is a problem with correctly identifying the number of milliseconds of each pseudorange.

Below in Fig. 3.4, a tape measure analogy visually explains the difference between the full

pseudorange and the sub-millisecond pseudorange that is available.
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Figure 3.4: Sub-millisecond pseudorange visualization [5]

Unlike the image above, the amount of milliseconds is unclear. This is because there

is uncertainty in the satellite positions, the common bias, and the satellite clock errors.

The real problem occurs when the common bias causes an integer rollover. van Diggelen

explores the benign and malign cases in depth [5]. So to solve for the millisecond ambiguity,

the van Diggelen technique will be described. The first step is to find the sub-millisecond

pseudoranges given by the code phase measurements, either from acquisition or tracking.

Next, a reference satellite (usually the strongest) is chosen. Using the ephemeris and the a

priori state, the full pseudorange is estimated and the millisecond integer N (0) is assigned.

The 0 represents the reference while k will represent any other satellite. Thus, the reference

satellite has full pseudorange N (0) + z(0) where z(0) is the sub-millisecond pseudorange.

The assigned integer N (0) will be used to reconstruct the the other satellites’ integers in a

way that removes the possibility of integer rollover. Keep in mind, the reconstructed full

pseudorange has an implicit common bias and is related to the actual geometric range by

the following:
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N (0) + z(0) = r(0) − δ(0)t + b+ ε(0)

= r̂(0) − d(0) − δ(0)t + b+ ε(0)
(3.8)

where r(0) is the unknown actual geometric range, r̂(0) is the estimated geometric range

from the a priori position at the a priori time of transmission, d(0) is the error in r̂(0) caused

by the error in the a priori position and time, δ
(0)
t is the satellite clock error, b is the common

bias, and ε(0) is the measurement errors that includes atmospheric and thermal errors. The

goal is to assign integers N (k) such that they share the same common bias. If this is possible,

then for satellite k the full pseudorange would be:

N (k) + z(k) = r(k) − δ(k)t + b+ ε(k)

= r̂(k) − d(k) − δ(k)t + b+ ε(k)
(3.9)

where b is the same common bias as for the reference satellite. Subtracting satellite

k ’s pseudorange by the reference satellite’s, the following is found:

(N (k)+z(k))−(N (0)+z(0)) = (r̂(k)−d(k)−δ(k)t +b+ε(k))−(r̂(0)−d(0)−δ(0)t +b+ε(0)) (3.10)

and solving for N (k):

N (k) = N (0) +z(0)−z(k) + (r̂(k)−d(k)−δ(k)t + b+ε(k))− (r̂(0)−d(0)−δ(0)t + b+ε(0)) (3.11)

It is clear that the common bias b cancels exactly. And, if the magnitude of (−d(k) +

ε(k) + d(0) − ε(0)) is less than 0.5 light-milliseconds (about 150 km), then the correct value

of N (k) is given by:

N (k) = round(N (0) + z(0) − z(k) + (r̂(k) − δ(k)t ) − (r̂(0) − δ(0)t )) (3.12)
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where all variables are known, and no matter the value of N (0), the values for N (k)

will have the same common bias. A block diagram summarizing the calculation of the

pseudorange milliseconds is shown in Fig. 3.5.

Figure 3.5: Millisecond ambiguity block diagram [5]

With the full pseudoranges, the five-state navigation algorithm can be implemented as

shown above in Fig. 3.3.

3.3 Changes to the GPS Software Receiver

To implement Assisted-GPS in the software receiver based off of Borre, Akos, et al.’s

book, there are a few changes in acquisition and calculating PVT solutions. In acquiring

the satellites, there is now no need to search for all the different PRN codes. The visible

satellites are passed to the A-GPS code with the code phases and doppler frequencies in

order to acquire all the visible satellites much more quickly. This is visually represented in

Fig. 3.6 below.



www.manaraa.com

30

Figure 3.6: A-GPS reduced acquisition search space [5]

Even with just the visible satellites, the search time is reduced significantly. This

reduced time could allow for more time to pick up weak signals instead. In calculating

the navigation solutions, there is now no need to decode the ephemeris which removes the

requirement to have a full frame of data before being able to calculate the receiver’s position

and time. Instead, the ephemeris is passed in with the a priori position and time and the

five-state least squares algorithm described earlier is used. The only other detail is that

the estimated transmission time is found by subtracting the estimated a priori pseudoranges

from the a priori coarse time estimate.



www.manaraa.com

Chapter 4

Accurate Timing Resolution

Even though the five-state least squares converges and gives a good coarse time, the

timing can still be tens of milliseconds off depending on the mitigation of error sources.

The problem is that it is very difficult to ascertain if the satellites sent their signals at one

millisecond or the next since the pseudorange changes on the order of meters. So the least

squares will converge but because of the other errors, it is most likely not the true time.

Below in Fig. 4.1, the GPS time milestones are shown.

Figure 4.1: GPS time milestones as a function of time [5]

The goal is to use as little data as possible.
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4.1 TOW-Decoded A-GNSS (6sec+)

One of the methods to provide good timing involves decoding the TOW word. However,

this requires upwards of six seconds in order to ensure that the TOW word is in the data to

decode. Because of this, this thesis will instead focus on using the data bit transition.

4.2 Data-bit Transition A-GPS

Using the data bit transitions is more challenging. First, there has to be enough data to

ensure that a data-bit transition is present. This can be upwards of 100 milliseconds to have a

strong probability of transition. Also required is that the five-state least squares algorithm’s

coarse time error from the true time is less than 10 milliseconds. This is not guaranteed for

all geometries or situations, especially when atmospheric errors are not mitigated. Assuming

the error is less than 10 milliseconds, the time of transmission for satellite k is estimated as:

t̂
(k)
tx = t̂c −

∣∣x(k)(t̂tx) − xxyz
∣∣ /c+ δ

(k)
t (4.1)

where t̂c is the coarse time estimate returned by the five-state least squares algorithm,

x(k)(t̂tx) is the satellite’s position at time t̂tx, c is the speed of light, and δ
(k)
t is the satellite

clock correction.

If the navigation bit transition is known, then the number of milliseconds from each

satellite’s bit transition is calculated. Every bit transition occurs at what the satellite thinks

is a multiple of 20 milliseconds when it transmits the signal, i.e at 1.02 s, 1.04 s, 1.06 s

etc. Therefore, the number of milliseconds from this bit transition gives the amount of

milliseconds from a time with a modulus of 20 milliseconds. So, if for a satellite the number

of milliseconds away from a bit transition was 7, then the possible transmission times could

be 1.013 s, 1.033 s, 1.053 s and likewise for every 20 milliseconds. The concern is how to

pick the correct 20 millisecond time since it is ambiguous. This is where the assumption that

the coarse time is correct within 10 milliseconds is important. If true, then the following
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equation will round to the correct 20 millisecond:

t
(k)
tx20ms

= round(t̂
(k)
tx /20ms+N (k)

m /20) ∗ 20ms (4.2)

where t̂
(k)
tx is the estimated transmission time given by Eq. 4.1, and N

(k)
m is the integer

number of milliseconds from the satellite k’s bit transition. With the correctly rounded 20

millisecond transmission time, the number of milliseconds N
(k)
m can now be used to find the

transmission of the current millisecond (i.e. without sub-millisecond correction) as:

t
(k)
tx1ms

= t
(k)
tx20ms

−N (k)
m × 10−3 (4.3)

Finally, to find the transmission time with the sub-millisecond correction, the code

phase is used as shown below:

t
(k)
tx = t

(k)
tx1ms

+ (1 − z(k)) × 10−3 (4.4)

where z(k) is the code phase for the kth satellite in terms of a fraction of a chip. The

calculated transmission time is now as close to the correct transmission time that can be

achieved and is summarized in the equation below:

t
(k)
tx = round(t̂

(k)
tx /20ms+N (k)

m /20) ∗ 20ms+ (1 − z(k) −N (k)
m ) × 10−3 (4.5)

With this time of transmission, the error in the previously computed transmission time

t̂
(k)
tx can be found for each satellite:

δ
(k)
ttx = t

(k)
tx − t̂

(k)
tx (4.6)

Ideally, this value would be equal for all satellites, but because of slight errors in the

code phase or other sources, they have slight variations. However, they should definitely all

be within one millisecond of each other. Now, the accurate coarse time estimate is found by
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adding the average of δ
(k)
ttx for all satellites to the estimate of coarse time, as shown in the

equation below:

tc = t̂c + δttx (4.7)

This is the very accurate coarse time estimate. For even more accuracy, the normal

GPS four-state least squares algorithm is run with the coarse time estimate and associated

satellite positions to further refine it (usually on the order of nanoseconds improvement).

4.3 Accuracy as a function of Time Ambiguity

Unfortunately in many cases, the accuracy of the five-state least squares is not within

10 milliseconds. Therefore, a different time ambiguity is required to be a benchmark for the

satellite transmission times. All that needs to change for the corrected time of transmission

equation is to replace the 20 millisecond modulus time with a different time ambiguity as

shown below:

t
(k)
tx = round(t̂

(k)
tx /tmod +N (k)

m /(tmod/10−3)) ∗ tmod + (1 − z(k) −N (k)
m ) × 10−3 (4.8)

where tmod is the time ambiguity in seconds, and N
(k)
m is the number of milliseconds

from that ambiguity. The experiments described later will investigate the time ambiguity

where accurate timing can most likely be achieved.

4.4 Changes to the Software Receiver

To include time resolution using an arbitrary ambiguity, the only changes show up in the

five-state least squares function of the A-GPS software receiver. Essentially, after the least

squares algorithm converges, the method explained above is used to round the transmission

times to the closest time ambiguity that is being used. The number of milliseconds from the

next time ambiguity is passed into the function and is used with the sub-ms pseudorange
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to offset from the closest time ambiguity. This gives the correct time of transmission for

each satellite. The difference between this time of transmission and the estimated time of

transmission is found and averaged for each satellite and used to correct the coarse time as

shown in Fig. 4.2.

Figure 4.2: MATLAB code for time correction

Finally, for improved accuracy the satellite positions are found at the correct time of

transmissions and the calculated full pseudoranges are subtracted by the common bias found

in the five-state least squares. These satellite positions and pseudoranges are then used in

the four-state least squares to get a more accurate position and common bias estimate.

4.5 Code Layout

The set-up for the eniter code structure consists of a regular GPS L1 SDR (a.k.a Full

SDR) and an A-GPS L1 SDR (a.k.a. A-GPS SDR). A data file is first passed to the Full

SDR and goes through acquisition, tracking, and position estimation as explained above.

Importantly, this implies that the file is at least 37 seconds long. After the file is analyzed,

the relevant navigation solutions are saved. If time accuracy is not a worry, then only the

decoded ephemeris parameters, the acquired satellites, the position, and the first sample

time of the file are saved. For improved time accuracy, the number of milliseconds from the

start of the file to the first subframe start for each satellite is also saved. This is explained

in the section above.

The saved parameters are then passed to the AGPS SDR. The position and time are
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the a priori guesses for the A-GPS algorithm (subject to error offsets). If time is not a

concern, then the PRN’s given by the Full SDR are acquired and the five-state least squares

A-GPS algorithm is implemented. For accurate time, the signals are tracked for only three

seconds and then the time-corrected five-state least squares algorithm is used.
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Testing & Results

The experiments’ main objective was to test A-GPS’s ability to converge. First, with-

out looking at the timing accuracy, the sensitivity of the A-GPS position error was examined.

The initial position and time passed to the A-GPS code was varied until a good range of

acceptable initial error values was found.

Then, the main experiment was performed where the accuracy of the timing was ex-

amined with several data sets.

5.1 Sensitivity to A Priori Position and Time Errors

One of the main questions that needs to be answered is: how inaccurate can your

a-priori position and time be and still give accurate position results? To investigate the

allowable errors, the data is simulated with several different errors. First, the effect of

position and time errors are examined separately. Then, they are added in parallel to

form a 2-D error space. In order to get a strong sense of the allowable combined errors,

the experiment is run over 24 hours so that different satellite geometries and atmospheric

conditions are included in the results.

The plot shown in Fig. 5.1 shows the position error norm with respect to the initial

position bias.
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Figure 5.1: Position errors w.r.t initial position bias

After around 50 kilometers of offset, the position error starts to increase rapidly as the

five-state least squares does not converge correctly.

A similar story plays out for the position errors with respect to the initial time bias as

shown in Fig. 5.2.

Figure 5.2: Position errors w.r.t initial time bias

After around 40 seconds, the initial time bias is too much for the least squares algorithm

to reliably converge.
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Varying both initial position and time, the position error over the 2-D space is shown

in Fig. 5.3.

Figure 5.3: Position errors w.r.t initial position and time biases

The safe zone is roughly any position error less than 35 kilometers and any time error

less than 30 seconds. van Diggelen in his A-GPS book has a safe zone of roughly 100 km

position error or 1 minute time error [5].

5.2 Time Ambiguity

The next big question is: how much time ambiguity is required to ensure that the

A-GPS algorithm can find time accurately? Basically it is the search for how much certainty

of time there must be to then converge within nanoseconds. To understand, imagine you go

on a walk with signs at specific intervals and a step-counter you reset at every sign. If the

signs were a mile apart, then it would be easy to know how far you have walked since you

know easily whether you are on your first or second mile, and also know how many steps you
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are after the mile marker. However, it is a different story if the signs were 200 feet apart. It

would be very hard to distinguish how many signs you passed but you still know exactly how

many steps you are from the last sign. There is a chance of guessing your distance walked

correctly but it is low. With a sign every foot it would be almost impossible to guess the

distance traveled. For A-GPS, the signs are the time ambiguities, and the step counter is

represented by the number of milliseconds until the time ambiguity.

In the GPS L1 C/A signal, there are three time ambiguities built in. They are the

millisecond code period, the 20 millisecond navigation bit, and the 6 second navigation

message subframe. For this experiment, the milliseconds to the subframe start for each

satellite is passed to the A-GPS code. With that, it can be modulated down to any time

ambiguity that is a factor of 6000 milliseconds. This is so that at the six second subframe

start, every other time ambiguity is also at that time. Then, an analysis of time accuracy as

a function of time ambiguity can be tested.

To look at the time accuracy with respect to time ambiguity, data is first collected and

run through the Full SDR. The necessary information for A-GPS is collected as well as the

Full SDR’s first sample time, corrected sampling frequency, and number of milliseconds to

the first subframe for each satellite. The same data is then run through the A-GPS SDR with

the milliseconds until the currently tested time ambiguity and the method described above

is implemented. This is repeated for every time ambiguity that is being tested. Further, this

is then repeated for 200 hundred data collections spaced every 15 minutes. This corresponds

to a 50 hour time span.

An important note is that the first sample time and corrected sampling frequency

calculated by the Full SDR only is calculated using the results from the first three seconds

of data so that it is a better comparison to the A-GPS code.

In Fig. 5.4, the first sample time errors are shown with respect to ambiguity time.
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Figure 5.4: First sample time error w.r.t ambiguity time

Interestingly, the error increases in some cases as ambiguity time increases. This is

likely due to the transmission time rounding to the incorrect time, which is a bigger mistake

the larger the ambiguity.

In Fig. 5.5, the probability of converging given a specific ambiguity time is shown.

Figure 5.5: Probability distribution of ambiguity time of convergence

The probabilities look to follow a gamma distribution with most of the convergence

happening before 200 milliseconds.
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In Fig. 5.6, the more useful cumulative distribution is shown that gives a good visual-

ization of convergence.

Figure 5.6: Cumulative distribution function of ambiguity time of convergence

At 100 ms, it is 91% likely to converge while at 200 ms it is 99% likely.

The results for key tested ambiguities can be seen in the table below:

Table 5.1: Probability of Having Converged given Ambiguity Time

Ambiguity Time (ms) 10 20 30 40 50 60 80 100 150 200

Convergence Prob. (%) 2.1 13.0 31.1 43.5 57.5 68.4 83.4 91.2 96.9 99.0

It is also important to point out that using the navigation bit ambiguity time of 20 ms

only results in 13 % probability of convergence.

These results lead to the next question: what causes the least squares to converge at

different ambiguity times? One possible metric is the dilution of precision of the fifth state,

coarse time. Below in Fig. 5.7 is a plot of the coarse time dilution of precision (CTDOP)

with respect to the ambiguity time of convergence.
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Figure 5.7: Coarse time DOP w.r.t ambiguity time of convergence

There is a clear linear relationship although the data is wide spread. At each extreme,

the CTDOP does explain the ambiuity time of convergence. With only 10 ms required, the

CTDOP is very small and when 500 ms is required, CTDOP is very large.

The CTDOP is more clearly visualized as a 2-D histogram in Fig. 5.8 below:

Figure 5.8: 2-D histogram of coarse time DOP and ambiguity time of convergence



www.manaraa.com

44

Most of the distribution is within 200 ms and a CTDOP of 0.003.

Another possible metric for predicting ambiguity time of convergence is number of

satellites. However, it might be important to see the relationship between number of satellites

and CTDOP first. Looking at Fig. 5.9, the logarithm of the CTDOP is plotted with respect

to the number of satellites.

Figure 5.9: The logarithm of CTDOP w.r.t number of satellites

This shows that there is an exponential decay in CTDOP as the number of satellites

increases. This is an interesting but reasonable result, since the geometry of the satellites

directly impacts the coarse time result.

As an important note, it is necessary to see the distribution of number of satellites that

the experiment’s data contains. In Fig. 5.10, the number of satellites for the experiment is

shown.
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Figure 5.10: Histogram of number of satellites

This is significant in the fact that most of the cases had a good amount of satellites

and thus the data does not represent the cases with five or six satellites well.

Looking at the first sample time, Fig. 5.11 shows the distribution of first sample time

errors as compared to the Full SDR with a normal curve overlaid.

Figure 5.11: Probability distribution of first sample time error

As can be seen, most errors fall under a magnitude of one nanosecond error with none

exceeding two nanoseconds. An important note is that these first sample time errors are the

errors between the A-GPS SDR and the Full SDR. These are the errors once converged, and
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it is important to note that they do not change as ambiguity time is increased further.

In Fig. 5.12, a 2-D histogram is shown of the number of satellites and the logarithm

of the first sample time error.

Figure 5.12: 2-D histogram of log of first sample time error and number of satellites

Not too much can be seen from this plot, although there is a possible correlation that

shows having less satellites could result in a larger first sample time error.
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Chapter 6

Discussion

Overall, this method works well but is linked to the performance of the least squares

algorithm. The sections below dive into how to improve the performance, how other GNSS

signals can provide the necessary time ambiguity, and how combining GNSS signals would

help.

6.1 Improving the Accuracy of the Five-State Least-squares

If possible, the ideal performance of the code would be nanosecond-level operation with

just the navigation bit data for the time ambiguity. This is not the case. However, the data

shown above was collected and processed with no mitigation of atmospheric or multipath

errors. Reducing these errors would improve the convexity of the five-state least squares and

shift the probability of converging to be focused at an earlier time of convergence.

6.2 Other GNSS Signals

In real A-GNSS operation, arbitrary ambiguities are unfortunately not available to

the receiver. All that the receiver has are the signals that are found in the different GNSS

constellations. So the goal therefore is to find a time ambiguity that repeats just often enough

to provide a correction that would make convergence to nanosecond-level timing guaranteed.

For example, GPS L2C has its CL code that repeats every 1.5 seconds, which would be

ample enough time ambiguity. In this case, it is even more useful because the transition point
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can be determined with much less than 1.5 seconds of data. Another example is GLONASS

with its frame repeating every two seconds. Once synced, two seconds is also more than

enough time to ensure nanosecond-level accuracy in all cases.

6.3 Combining GNSS Signals

As seen, the number of satellites has an exponential effect on the CTDOP, and the

CTDOP has a linear relationship with time of convergence. By combining several GNSS

signals, the number of available satellites for the five-state least squares increases drastically,

and is much more likely to need less ambiguity time to converge. For combining GPS L1

and GLONASS L1, one extra state would be required in the least-squares algorithm to keep

track of the time difference between the two signals. However, this would be easy to handle

with the extra amount of available satellites.
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Chapter 7

Conclusion

In this thesis, a brief overview of the GPS L1 signal structure and GPS position and

time estimation was given. Then, van Diggelen’s A-GPS method was discussed with his

millisecond ambiguity approach. Next, a way to accurately use any ambiguity time to reach

nanosecond-level accuracy was developed. Experiments were then run to test the sensitivity

of A-GPS to a priori errors in position and time, as well as the performance of the first sample

time error as a function of ambiguity time. It was found that the safe zone for A-GPS is less

than 35 km initial position error and less than 30 seconds initial time error. It was also found

that an ambiguity time of 200 ms converged to nanosecond-level accuracy 99 % of the time.

Interestingly, the coarse time dilution of precision had a linear relationship with the time of

convergence, and decayed exponentially with an increase in the number of satellites. Most

first sample time errors were within one nanosecond while none exceed two nanoseconds. It

was then discussed that improving the accuracy of the five-state least squares would result

in earlier convergence times. Also, it was discussed that other GNSS signals could provide a

small enough ambiguity time to use this method and have it converge in all cases. Finally, it

was discussed that other GNSS signals can be combined with GPS to provide more satellites

to decrease the necessary convergence time.
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